

Датчики температуры Преобразователи термоэлектрические ТП-Б ТП-Б-У

Термометрические вставки

Краткое описание изделия

• Датчики температуры ТП-Б, ТП-Б-У предназначены для измерения температуры сыпучих, жидких, газообразных, твердых веществ и сред, в различных отраслях промышленности и хозяйственной деятельности, в том числе и на взрывопожароопасных производствах, а также в жилых помещениях.

Дополнительная информация

- Дополнительная документация на датчики температуры ТП-Б, ТП-Б-У доступна для бесплатной загрузки на сайте: www.pointltd.by
- Вы также можете получить ее с помощью сканирования QR кода:

Производитель ООО «Поинт»

Адрес: 211412, Республика Беларусь, Витебская обл., г. Полоцк, ул. Строительная 22 тел./факс +375-(214)-74-38-01 e-mail: mail@pointltd.by.

- Все права защищены. ООО «Поинт» является зарегистрированной торговой маркой.
- Перед началом любых работ прочитайте это руководство по эксплуатации!
- Сохраните РЭ для дальнейшей работы!

Официальный представитель в Российской Федерации ООО «Термопоинт»

Адрес: Строительный проезд 7А,

корпус 28 офис 110

Почтовый адрес: 125362, г. Москва

тел.: +7(495) 799-94-38 e-mail: mail@termopoint.ru

Сервисная служба

- Для получения технической или иной информации можно обратиться в нашу сервисную службу. Контактные данные приведены на странице 2.
- Кроме того, в ходе получения данных о применения наших изделий, наши сотрудники имеют дополнительные возможности усовершенствованию и улучшению выпускаемой продукции.

Содержание

Сервисная служба	2
1 Описание и работа	6
1.2 Характеристики	7
1.4 Устройство и работа	9
•	
-	
<u>.</u>	
2.1 Меры безопасности	12
•	
•	
•	
· · · · · · · · · · · · · · · · · · ·	
Приложение А Условное обозначение ТП	22
Приложение Б Габаритные размеры ТП	23
Приложение В Электрические схемы для ТП	
внутренних и внешних соединений	24
внутренних и внешних соединений 2 Іриложение Г Контровка и пломбировка ТП (рекомендуемое) 3 Іриложение Д Чертеж средств взрывозащиты ТП 3 Іриложение Е Виды спая рабочего конца 3 Іриложение Ж Запасные части, расходные материалы и аксессуары (справочно) 3 Сертификат о соответствии (справочно) 3 Іриложение З Номинальная статическая характеристика 3 термопар и класс допуска 3	
	33
Формуляр возврата Заявление о загрязнении приборов и компонентов	

Общая информация и примечания

• Руководство по эксплуатации (далее РЭ) является неотъемлемой составной частью изделия преобразователей термоэлектрических (далее - ТП), сохранять для дальнейшего использования.

Требования к работе персонала

- Требования к персоналу, выполняющему монтаж, ввод в эксплуатацию, диагностику и техобслуживание:
- Иметь квалификацию для выполнения конкретных функций и задач указанных в настоящем РЭ и технической документации.
- Перед началом любых работ персонал должен внимательно прочесть и понять данное РЭ.
- Ознакомиться с нормами федерального/национального законодательства.
- Перед началом работы внимательно ознакомиться с инструкциями, представленными в РЭ, с дополнительной документацией, а также с сертификатами соответствия (в зависимости от цели применения).
- Следовать РЭ и соблюдать основные условия эксплуатации указанных в РЭ и технической документации.
- Обслуживающий персонал должен соответствовать следующим требованиям:
- -обучен и аттестован для выполнения конкретных функций и задач, на право проведения работ на ОПО.
- Основным условием для безопасной работы является соблюдение всех указаний по безопасности и инструкций, приведенных в данном РЭ.

ВНИМАНИЕ!

... указывает на потенциально опасную ситуацию/действие, которое, если его не избежать, может привести к серьезным травмам, гибели.

ВНИМАНИЕ!

- ... указывает на контакт с опасными технологическими средами; также экстремальная температура (высокая или низкая) может привести к травмам, повреждению изделия и ущербу для окружающей среды.
- В случае повреждения ТП, возможно наличие на изделии и присоединительной голове агрессивной технологической среды под избыточным давлением и/или экстремальной температуры.
- Необходимо соблюдать правила обращения с агрессивными или иными веществами, в соответствии с правилами и стандартами, той страны, где эксплуатируется ТП.
- Необходимо применять соответствующие средства индивидуальной защиты.

Эксплуатационная безопасность

Опасность несчастного случая!

- Эксплуатация ТП должна осуществляться, только когда оно находится в исправном рабочем состоянии и не представляет угрозу безопасности.
- Ответственность за исправное состояние ТП без повреждений несет Заказчик.

Модификация изделия

- Несанкционированное изменение конструкции ТП **ЗАПРЕЩЕНО**, так как может представлять непредвиденную и не управляемую опасность, на объектах, эксплуатирующих данное изделие.
- Если, несмотря на все вышеизложенное, требуется внесение изменений в конструкцию ТП, обратитесь на предприятие **ООО** "Поинт".

Ремонт

- Ремонт ТП возможен только при наличии аккредитованной лаборатории.
- Для условия длительного обеспечения эксплуатационной безопасности и надежности производить периодический контроль за ТП.

Температура

ВНИМАНИЕ!

В процессе эксплуатации ТП, теплопередача или тепловыделение может привести к повышению температуры в присоединительной голове.

• Превышение рабочей температуры изделия или корпуса (оболочки) не допускается и должно быть предотвращено с помощью соответствующей теплоизоляции или удлинительной вставки достаточной длины.

ВНИМАНИЕ!

Учитывая конвекцию и тепловое излучение, изделие может быть повреждено даже во время монтажа, если при этом не соблюдается допустимая рабочая температура.

- Максимально и минимально допустимая температура зависит от различных параметров: указанные максимальные и минимальные значения допустимой температуры для материалов термометрической гильзы, исполнение изделия, типов сертификации и т.д. в технической документации.
- Итоговые предельные значения для ТП можно определить по соответствующим максимально и минимально допустимым значениям, указанных в технической документации.
- ТП могут устанавливаться в процесс как непосредственно, так и в защитной гильзе.
- Исполнения защитной гильзы выбираются в зависимости от условий применения (температура, давление процесса, плотность и скорость движения среды).

Безопасность изделия

- Данное изделие разработано в соответствии с современными требованиями по безопасной работе, включая для опасных промышленных объектах (ОПО), проведены испытания и поставляются с предприятия в безопасном для эксплуатации состоянии.
- Изделие соответствует действующим стандартам и нормам.
- Кроме того, изделие отвечает требованиям нормативных документов EAC, перечисленных в сертификате соответствия TP TC в отношении изделий.
- Изготовитель подтверждает, нанесением на изделие соответствующих знаков, логотипов и т.д.
- Изготовитель не несет ответственности за повреждения, вызванные неправильным использованием или использованием изделия не по назначению.
- Части изделия, работающие в непосредственном контакте с измеряемой средой, должны обладать достаточной устойчивостью к технологическим средам.

Остаточные риски

ВНИМАНИЕ!

Прикосновение к горячим поверхностям изделия сопряжено с опасностью термического ожога! Во время работы изделие может нагреваться до температуры, близкой к температуре процесса.

ВНИМАНИЕ!

При повышенной температуры процесса, для предотвращения ожога, требуется обеспечить защиту от прикосновения к ТП.

Область применения

- Химическая промышленность
- Энергетика
- Газоперерабатывающая промышленность
- Нефтехимическая промышленность
- Общие промышленные предприятия
- Специальные решения например, изделия из материалов, не упомянутых в настоящем РЭ, с оригинальными технологическими соединениями, оснащением и т. д., как правило, могут быть выполнены на заказ.

1 Описание и работа

1.1 Назначение

- 1.1.1 Термоэлектрический преобразователь (далее ТП), термопары предназначены для измерения температуры сыпучих, жидких, газообразных, твердых веществ и сред, в различных отраслях промышленности и хозяйственной деятельности, в том числе и на взрывопожароопасных производствах, а также в жилых помещениях.
- 1.1.2 Термопары выпускают в двух модификациях:
- ТП-Б термопары, с номинальной статической характеристикой преобразования (далее HCX) по СТБ ГОСТ Р 8.585;
- ТП-Б-У термопары с унифицированным выходным сигналом постоянного тока от 4 до 20 мА, от 0 до 5 мА, от 0 до 20 мА, по ГОСТ 26.011, цифровой протокол НАRT совмещенный с унифицированным выходным сигналом. Могут изготавливаться со встроенным жидкокристаллическим или светодиодным индикатором.
- Метрологические характеристики жидкокристаллических, и светодиодных индикаторов не нормируются.
- 1.1.3 В клеммную голову ТП-Б-У устанавливается измерительный преобразователь (далее преобразователь), который преобразует сигнал первичного преобразователя температуры в унифицированный выходной сигнал постоянного тока по ГОСТ 26.011.
- Преобразователь является неотъемлемой частью ТП-Б-У.
- В качестве первичных преобразователей температуры в ТП-Б-У применяются ТП-Б.
- 1.1.4 ТП-Б-У соответствуют требованиям ТР ТС 020/2011 «Электромагнитная совместимость технических средств».
- ТП-Б-У могут иметь линейную и нелинейную (корнеизвлекающую), возрастающую или убывающую зависимость выходного сигнала от температуры.
- Входные и выходные цепи ТП-Б-У гальванически связаны.
- Термоэлектрические преобразователи могут состоять из нескольких первичных преобразователей температур разной длинны (далее многозонные).
- 1.1.5 По способу контакта с измеряемой средой ТП подразделяются на:
 - погружаемые;
 - поверхностные.

(в зависимости от конструктивного исполнения), по условиям эксплуатации — стационарному исполнению, по отношению к измеряемой среде — герметичные.

1.1.6 ТП при поставке на АЭС относятся к 4 классу безопасности согласно Постановлению Министерства по чрезвычайным ситуациям Республики Беларусь от 13.04.2020 № 15.

- ТП относятся к однофункциональным, одноканальным, двухканальным или многоканальным изделиям.
- 1.1.7 ТП допускается применять на сейсмостойкость 9 баллов по шкале MSK-64 при уровне установки над нулевой отметкой до 70 м.
- 1.1.8 Условия эксплуатации ТП-Б соответствуют группе Д3, по ГОСТ 12997, но с температурным диапазоном от минус 50 °C до +85 °C, для термопар специального исполнения температурный диапазон эксплуатации от минус 65 °C до +125 °C;
- -для ТП-Б-У с жидкокристаллическим индикатором температурный диапазон от минус $40\,^{\circ}$ С до $+70\,^{\circ}$ С.
- 1.1.9 По устойчивости к механическим воздействиям ТП являются вибропрочными согласно ГОСТ 12997 и соответствуют группам до V3 включительно в зависимости от исполнения, за исключением высокотемпературных в керамической изолящии
- 1.1.10 По защищенности от воздействия окружающей среды ТП являются пыле-, водозащищенными (соответствуют степени защиты IP65/68) по ГОСТ 14254.
- 1.1.11 ТП согласно ГОСТ 27.003 относятся к изделиям конкретного назначения непрерывного применения, ремонтируемым или не ремонтируемым, в зависимости от конструктивного исполнения.
- 1.1.12 Термопары соответствуют требованиям ТР ТС 012/2011.
- Взрывозащищенные ТП могут применяться во взрывоопасных газовых средах, зонах (zone 0, zone 1, zone 2), в соответствии с требованиями ГОСТ IEC 60079-10-1, а так же в зонах, опасных по воспламенению горючей пыли (zone 20, zone 21, zone 22) в соответствии с требованием ГОСТ 31610.10-2/IEC 60079-10-2 и других документов, регламентирующих применение электрооборудования во взрывоопасных зонах.
- 1.1.13 Показатель тепловой инерции & термопар, не более значения 160 с.
- Минимально возможный показатель тепловой инерции 0,3 с.
- Показатель тепловой инерции указывается в паспорте на термопару (по согласованию).
- 1.1.14 Питание ТП-Б-У выполняется от источника постоянного тока напряжением (24 ± 12) В.
- 1.1.15 Питание взрывозащищенных ТП-Б-У должно осуществляться от источника постоянного тока напряжением от 12 до 30 В с выходной искробезопасной цепью.

1.2 Характеристики

1.2.1 ТП-Б имеют одну из следующих НСХ, электродного материала используемого в качестве чувствительного элемента по СТБ ГОСТ Р 8.585.

Таблица 1 материал ЧЭ

Обозначение типа	Материал ЧЭ (Сплав элемента)
R	ТПП (Платина – 13 % родий/платина)
S	ТПП (Платина – 10 % родий/платина)
В	ТПР (Платина – 30 % родий/платина – 6 % родий)
J	ТЖК [Железо/медь – никель (железо/константан)]
T	ТМК [Медь/медь – никель (медь/константан)]
E	ТХКн [Никель – хром/медь – никель (хромель/кон-
L	стантан)]
К	ТХА [Никель – хром/никель – алюминий (хромель/
K	алюмель)]
N	ТНН [Никель – хром – кремний/никель – кремний]
11	(нихросил/нисил)]
A(A-1, A-2, A-3)	ТВР (Вольфрам – рений/вольфрам – рений)
L	ТХК (Хромель/копель)
M	ТМК (Медь/копель)

1.2.2 Значения допустимого отклонения ТЭДС от НСХ, в температурном эквиваленте приведены в таблице 1ж. Диапазон измерений в зависимости от исполнения монтажной части термопары, материала оболочки и НСХ термопары указан в таблице 2.

Таблица 2 — Диапазон измерений в зависимости от исполнения монтажной части, материала оболочки и НСХ $T\Pi$ -F

- 1.2.3 Диапазон измеряемых температур ТП-Б-У: от минус 200 до +1300 °C.
- 1.2.4 Диапазон унифицированного выходного сигнала должен быть от 0 до 5 мA, от 4 до 20 мA, от 0 до 20 мA.
- 1.2.5 Основная приведенной погрешности ТП-Б-У (γ) , выраженная в процентах от диапазона изменения выходного сигнала $(\pm 0.25; \pm 0.5; \pm 1)$ %.

Таблица 3 Цветовая кодировка по DIN EN

цветовое обозначение: оранжевый по DIN EN 584-2
цветовое обозначение: оранжевый по DIN EN 584-2
цветовое обозначение: чёрный по DIN EN 584-2
цветовое обозначение: коричневый по DIN EN 584-2
цветовое обозначение: фиолетовый по DIN EN 584-2
цветовое обозначение: зелёный по DIN EN 584-2
цветовое обозначение: розовый по DIN EN 584-2
цветовое обозначение: синий по DIN 43710
цветовое обозначение: серый по DIN EN 584-2

ВНИМАНИЕ!

Пользователь должен проверить, какой стандарт используется на его предприятии, и убедиться в том, что цветовая кодировка доведена до сведения персонала, занимающегося установкой, пусконаладкой и техническим обслуживанием.

и е ча-				Обозначени	е НСХ по СТБ Г	OCT P 8.585		
я, по- пара контажной ча- сти				Диа	пазон измерений	i, °C		
о лн гажно сти	Материал оболочки	K	L	J	N	Е	Т	S R
Исп		TXA	TXK	ТЖК	ТНН	ТХКн	TMK	ТПП10 ТПП13
Погружная термопара, поверхностная термопара	Сталь 12X18H10T, 08X18H10T, 10X17H13M2, 03X16H15M3 по ГОСТ 5632		от -200 до +800	от -200 до +800	от -200 до +800	от -200 до +800	от -200 до +400	от 0 до +800
рмопа	Сталь XH45Ю, XH78Т по ГОСТ 5632	от -200 до +1300	от -200 до +800	от -200 до +900	от -200 до +1300	от -200 до +900	от -200 до +400	от 0 до +1300
ная тер	Сталь 10X23H18, 20X23H18 по ГОСТ 5632	от -200 до +1100	от -200 до +800	от -200 до +900	от -200 до +1100	от -200 до +900	от -200 до +400	от 0 до +1100
ужі хно	Х23Ю5Т по ГОСТ 10994	от -200 до +1300	от -200 до +800	от -200 до +900	от -200 до +1300	от -200 до +900	от -200 до +400	от 0 до +1300
Погр	КВПТ (ТУ 1595-008-00188162- 96), МКР по ГОСТ 23619	от -200 до +1300	от -200 до +800	от -200 до +900	от -200 до +1300	от -200 до +900	от -200 до +400	от 0 до +1300
Кабельная термопара	Определяется изготовителем кабеля	от -200 до +1250	от -200 до +800	от -200 до +900	от -200 до +1250	от -200 до +900	от -200 до +400	от 0 до +1200
Бескор -	Изолятор: КВПТ (ТУ 1595-008-00188162- 96)	от -200 до +1300	от -200 до +800	от -200 до +900	от -200 до +1300	от -200 до +900	от -200 до +400	от 0 до +1300

Примечание

- По требованию заказчика возможно изготовление термопар с диапазоном измерений, находящимся внутри указанных диапазонов, в соответствии с НСХ и исполнением монтажной части термопар.

- По согласованию с заказчиком возможно применение материалов не входящих в данный перечень.
 - Обозначение типа термопреобразователя термопары по СТБ ГОСТ Р 8.585-2004

- Обозначение материал ЧЭ (сплав элемента) по СТБ ГОСТ Р 8.585-2004

- 1.2.7 Предел допускаемой дополнительной погрешности ТП-Б-У, вызванной изменением температуры окружающей среды на каждые 10 °C, не должен превышать:
- предела допускаемого значения основной погрешности для ТП-Б-У с пределом допускаемого значения основной погрешности $\pm 0.25 \%$;
- 0,5 предела допускаемого значения основной погрешности для ТП-Б-У с пределом допускаемого значения основной погрешности \pm 0,5 % и \pm 1 %.
- 1.2.8 Предел допускаемой дополнительной погрешности ТП-Б-У, вызванной плавным изменением напряжения питания в пределах, указанных в п.1.2.5, не превышает 0,5 предела допускаемой основной приведенной погрешности.
- 1.2.8.1 Предел допускаемой дополнительной погрешности ТП-Б-У, вызванной воздействием постоянных магнитных полей и переменных полей сетевой частоты с напряженностью до 400 А/м, не превышает 0,5 предела допускаемой основной приведенной погрешности.
- 1.2.8.2 Предел допускаемой дополнительной погрешности ТП-Б-У, вызванной воздействием повышенной влажности (более 90 %), не превышает 0,5 предела допускаемой основной приведенной погрешности.
- 1.2.8.3 Пульсация выходного сигнала ТП-Б-У не должна превышать 0,1 % от максимального значения выходного сигнала при сопротивлении нагрузки 500 Ом для выходного электрического сигнала от 4 до 20 мА и от 0 до 20 мА, 2 кОм для выходного электрического сигнала от 0 до 5 мА.
- 1.2.8.4 ТП-Б-У должны сохранять работоспособность при изменении сопротивления нагрузки (с учетом линии связи) в пределах от 10 до 500 Ом для выходного электрического сигнала от 4 до 20 мА и от 0 до 20 мА, от 10 до 2000 Ом для выходного электрического сигнала от 0 до 5 мА.
- 1.2.9 Технические характеристики, касающиеся взрывозащиты.
- 1.2.10 Искробезопасное соединение, вид взрывозащиты Ex «i» по ΓOCT 31610.11 и маркировкой взрывозащиты: 0Ex ia IIC T6...T1 Ga X, Ex ia IIIC T85°C...T450°C Da X.

- 1.2.11 Ограничение по электрической энергии Ex «i»
- Все последующие значения действительны с учетом дополнительно подключаемого измерительного преобразователя.
- Запрещается превышать следующие электрические значения:

Параметры ТП-Б:

Максимальное входное напряжение Uo: 80 мВ Максимальный входной ток Io: 1 мА Максимальная входная мощность Po: 0,001 Вт Максимальная внутренняя емкость Co: 300 мкФ Максимальная внутренняя индуктивность Lo: 300 мГн. Параметры ТП-Б-У:

Максимальное входное напряжение Ui: 30 В Максимальный входной ток Ii: 100 мА Максимальная входная мощность Pi: 0,8 Вт Максимальная внутренняя емкость Ci: 0,048 мкФ Максимальная внутренняя индуктивность Li: 0,1 мГн.

- 1.2.12 Взрывонепроницаемая оболочка, вид взрывозащиты $Ex \ll d$ » по $\Gamma OCT IEC 60079-1$ и маркировкой взрывозащиты: 1Ex db IIC T6...T1 Gb X, Ex tb IIIC T85°C...T450°C Db X.
- В данном исполнении предусмотрен взрывонепроницаемый корпус. Взрывоопасная среда вокруг ТП не воспламеняется при взрыве внутри корпуса (оболочки). Помимо применения взрывонепроницаемого корпуса, также достигается за счет соблюдения предписанной длины и ширины зазора воспламенения между корпусом и измерительной частью и кабельным вводом, имеющим вид взрывозащиты Ex «d».

1.3 Состав изделия.

- 1.3.1 Термопара имеет корпус и разъем для подключения или не изолированные проводные выводы. В корпус помещены клеммы или вторичный преобразователь. Опционально, ТП могут быть снабжены дисплеями, встроенными в корпус.
- 1.3.2 Термопара основана на эффекте Зеебека возникновение тока в замкнутой цепи из двух разнородных проводников при наличии градиента температур между спаями, позволяет точно и стандартизировано определить температуру.

Рисунок 1 вид.

1.4 Устройство и работа

- 1.4.1 Измерение температуры с помощью ТП основано на свойствах металлов, термопара это два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры.
- 1.4.2 Термоэлектрический эффект генерирование термоэлектродвижущей силы, возникающей из-за разности температур между двумя соединениями различных металлов или сплавов, образующих часть одной и той же цепи.
- 1.4.3 Соединенные между собой проводники помещаются в защитный корпус из стали либо другого материала, засыпаются безводной окисью алюминия или окисью магния и герметизируются компаундом (кроме бескорпусного исполнения). Выводы выведены из корпуса в виде жил или в виде кабеля, в случае исполнения без клеммной головы, либо на клеммы клеммной головы.
- 1.4.4 В клеммной голове термопары расположены контакты, к которым присоединяются удлинительные выводы. Присоединение осуществляется через кабельный ввод с максимальным диаметром кабеля 26 мм.
- 1.4.5 В клеммную голову ТП-Б-У дополнительно устанавливается преобразователь для преобразования сигнала в унифицированный токовый сигнал от 0 до 5 мА, от 0 до 20 мА, от 4 до 20 мА или цифровой протокол HART совмещенный с унифицированным выходным сигналом.

1.5 Обеспечение взрывозащиты

- 1.5.1 Взрывозащищенный ТП, с видом взрывозащиты «искробезопасная электрическая цепь» уровня
- «ia», обеспечивается при эксплуатации ТП в составе связанного электрооборудования, имеющего входную измерительную цепь с видом взрывозащиты «искробезопасная электрическая цепь i».
- 1.5.2 Искробезопасность электрических цепей термопар обеспечивается:
- питанием от искробезопасного источника питания;
- ограничением электрических параметров ТП до искробезопасных значений, соответствующих подгруппе IIA, IIB, IIC, IIIA, IIIB, IIIC для модификации ТП-Б, ТП-Б-У;
- подключением термопары к цепи измерения через барьер искрозащиты, установленный вне взрывоопасной зоны;
- отсутствием в конструкции емкостных и индуктивных элементов, опасных по запасаемой энергии для подгрупп IIA, IIB, IIC, IIIA, IIIB, IIIC для модификации ТП-Б, ТП-Б-У;
- конструктивным и схемотехническим исполнением электронной схемы в соответствии с ГОСТ 31610.0 и ГОСТ 31610.11.

- 1.5.3 Взрывозащищенность термопар с видом взрывозащиты «взрывонепроницаемая оболочка», обеспечивается заключением электрических цепей во взрывонепроницаемую клеммную голову, которая выдерживает давление взрыва и исключает передачу взрыва в окружающую взрывоопасную среду, что обеспечивается ее конструкцией в соответствии с ГОСТ 31610.0 и ГОСТ IEC 60079-1.
- 1.5.4 Средства взрывозащиты, термопары с видом взрывозащиты «взрывонепроницаемая оболочка», приведены в конструкторской документации на «Преобразователь термоэлектрический ТП-Б». Средства взрывозащиты, с указанием параметров взрывозащиты соответствующих ГОСТ IEC 60079-1.
- 1.5.5 Кроме этого, все резьбовые соединения предохранены от самоотвинчивания. Снятие крышки термопары с видом взрывозащиты «взрывонепроницаемая оболочка» возможно только после откручивания стопора специальным инструментом.
- Стопорный винт расположен в углублении клеммной головы в соответствии с рисунком 6.
- 1.5.6 Взрывозащищенные термопары оборудованы внешними заземляющими зажимами.
- Кроме этого, клеммные головы взрывозащищенных термопар с видом взрывозащиты «взрывонепроницаемая оболочка» оборудованы внутренним заземляющим зажимом.
- 1.5.7 Знак «Х» в маркировке взрывозащиты означает, что при эксплуатации взрывозащищенных термопар необходимо соблюдать следующие требования:
- при эксплуатации применять меры защиты от превышения температуры наружной части термопары выше допустимого значения для соответствующей категории окружающей взрывоопасной смеси пыли, газов и паров, вследствие теплопередачи от измеряемой среды;
 - беречь от механических нагрузок;
- ремонт и регулировка термопар на месте эксплуатации не допускаются;
- замена, отключение и подключение термопар должны осуществляться при выключенном питании;
 - необходимо обеспечить заземление корпуса.

1.6 Функциональная безопасность (SIL)

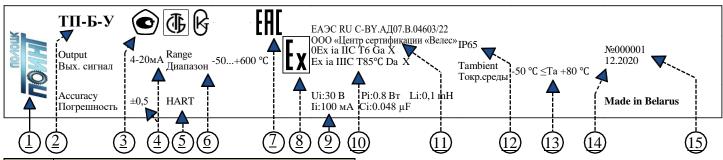
- 1.6.1 ТП со встроенными измерительными преобразователями, сертифицированы по стандарту SIL, поставляются с сертификатом согласно ГОСТ Р МЭК 61508-1, ГОСТ Р МЭК 61508-2, ГОСТ Р МЭК 61511-3 для использования в критических с точки зрения безопасности областях применения до уровня 3 согласно SIL (резерв).
- При использовании измерительного преобразователя устройство соответствует требованиям согласно SIL 2.

1.7 Средства измерений, инструменты, принадлежности.

Таблица 4

Наименование эталонов и вспомогательных средств измерений	Тип	Основные метрологические харак- теристики						
Прибор измеритель- ный	ПИ-002/1	Диапазон измерения относительной влажности: от 5 % до 98 %, предел допускаемой абсолютной погрешности $\Delta=\pm3$ %; диапазон измерения температуры окружающего воздуха: от 5 °C до 40 °C, предел допускаемой абсолютной погрешности $\Delta=\pm0,5$ °C						
Барометр-анероид	БАММ-1	Диапазон измерения: от 80 до 106 кПа, предел допускаемой абсолютной погрешности $\Delta=\pm~0,2$ кПа						
Установка пробойная	УПУ-1М	Диапазон воспроизводимых испытательных напряжений: от 0 до 10 кВ, приведенная погрешность $\gamma = \pm 4 \%$						
Мегомметр	Ф4102/1- 1М	Диапазон измерения: от 0 до 20000 МОм, Испытательное напряжение: 100 В, класс точности 1,5						
Термометр сопротив- ления платиновый эта- лонный	ЭТС-100	Диапазон измерения: от минус 196 °С до 660 °С, 3 разряд						
Преобразователь термоэлектрический платинородий-платиновый	ППО	Диапазон измерения: от 300 °C до 1200 °C, 2 разряд						
Система поверки термопреобразователей автоматизированная	АСПТ	Диапазон измерения: от 0 до 1500 Ом; предел основной абсолютной погрешности измерения напряжения: от 0 до 30 Ом, $\Delta=\pm 6\cdot 10\text{-}4\text{ Ом};$ от 0 до 300 Ом, $\Delta=\pm (2\cdot 10\text{-}5\cdot \text{R}+1\cdot 10\text{-}3)\text{ Ом};$ от 0 до 1500 Ом; $\Delta=\pm 3\cdot 10\text{-}2\text{ Ом}$ постоянная времени в режиме регистратора 2 с						
Штангенциркуль	шт-п	Диапазон измерения: от 0 до 500 мм, ц.д. \pm 0,1 мм						
Весы электронные	СП-30	Диапазон измерения: от 40 г до 30 кг, класс точности средний						
Магазин сопротивле- ний	P4831	Диапазон измерения: от 0,01 до 111111,1 Ом, л.т.0,02						
Вольтметр универсаль- ный	B7-34/A	Диапазон измерения: от 0 до 1000 В Погрешность измерения напряжения постоянного тока на пределах 1, 10, 100, 1000 В: $\pm (0.0015 + 0.002 (\text{Uk/Ux} - 1))$						
Вольтметр универсаль- ный цифровой	B7-65/2	Диапазон измерения: постоянного тока от 1 мА до 2 A; $\delta = \pm (0.2 \% + 15 \ \text{ед. мл. p})$						
Источник питания по- стоянного тока	Б5-45	Выходное напряжение: от 0,1 до 49,9 В, $\Delta = \pm (0.5\% U_{_{VCT}} + 0.1\% U_{_{MAKC}}) B$ Ток нагрузки: от 1 до 499 мA, $\Delta = \pm (1\% I_{_{VCT}} + 0.2\% I_{_{MAKC}}) A$						
Мера сопротивления	P331	Номинальное значение сопротивления: 100 Ом; класс точности 0,01						
Печь горизонтальная трубчатая малоинерци- онная	МТП-2М	Диапазон воспроизводимых температур: от 100 °C до 1200 °C, нестабильность поддержания температуры 0,1 °С/мин						

Продолжение Таблица 4 Средства измерений, инструменты, принадлежности.


струменты, прин	адлежно	ли.
Наименование эталонов и вспомогательных средств измерений	Тип	Основные метрологические харак- теристики
Сухоблочный калибратор температуры погружного типа	KT-650	Диапазон воспроизводимых температур: от 50 °C до 650 °C, пределы основной абсолютной погрешности воспроизведения температуры $\Delta=\pm~0.08~^{\circ}\mathrm{C}$
Вибрационная уста- новка	CB-2M	Диапазон частот: от 15 до 100 Гц Амплитуда смещения: от 0,1 до 2,3 мм
Термостат жидкостной	MT-MD	Диапазон воспроизводимых температур: от 30 °C до 150 °C, пределы абсолютной погрешности воспроизведения температуры $\Delta = \pm \ 0.02 \ ^{\circ}\mathrm{C}$
Криостат регулируе- мый	KP-80	Диапазон воспроизводимых температур: от минус 50 °C до 40 °C, нестабильность поддержания заданной температуры за 30 минут \pm 0,02 °C
Осциллограф цифро- вой	U T B - T R E N D 712-200-4	Диапазон коэффициента отклонения: от 5 мВ/дел до 50 В/дел, Диапазон коэффициента развертки: от 2 нс/дел до 5 с/дел
Рулетка измерительная металлическая	P10H2K	Диапазон измерения: от 0 до 10 м, класс 2
Манометр техниче- ский	MT5	Диапазон измерения: от 0 до 100 МПа
Стенд для испытаний оболочек на взрывоу- стойчивость		
Применание - Обор	улование пе	пецистенное в перечне может быть

Примечание - Оборудование, перечисленное в перечне, может быть заменено аналогичным, обеспечивающим выполнение требований настоящих технических условий.

1.8 Маркировка и пломбирование

- 1.8.1 Идентифицировать изделие ТП можно по следующим данным:
- Заводская табличка;
- Код заказа с расшифровкой функций и характеристик ТП;
- Заводская табличка, изображенная ниже, предназначена для того, чтобы помочь пользователю идентифицировать определенную информацию об изделии (например, серийный номер, конструкция, переменные, конфигурация и сертификаты).
- Заводская табличка (пример) с Ех исполнением.

Поле №	Описание
1	Наименование предприятия-изготовителя или товарный знак;
2	Обозначение типа преобразователь термоэлектрический
3	Знак утверждения типа средств измерений
4	для ТП-Б-У: - условное обозначение выходного сигнала и значение основной приведенной погрешности, выраженное в процентах
	для ТП-Б: - условное обозначение НСХ и класс допуска
5	Протокол обмена данных
6	Диапазон измерений
7	Единый знак обращения продукции на рынке государств-членов Таможенного союза
8	Специальный знак взрывобезопасности по TP TC 012/2011 (для взрывозащищенных исполнений)
9	Параметры искробезопасной цепи взрывозащищенного ТП
10	Обозначение взрывозащиты (только для взрывозащищенных ТП, Ех-маркировка взрывоопасной газовой и пылевой среды
11	Наименование или знак центра по сертификации и номер сертификата (для взрывозащищенных исполнений)
12	IP - степень защиты оболочки
13	Диапазон температур окружающей среды ta
14	Дата выпуска (год и месяц)
15	Заводской номер по системе изготовителя
Примечан	ие: Допускается нанесение дополнительной информации

- 1.8.2 Транспортная маркировка тары соответствует ГОСТ 14192, чертежам предприятия-изготовителя и содержит манипуляционные знаки «Верх». Основные, дополнительные информационные данные нанесены на одну из боковых стенок тары (ящика) черной несмываемой краской.
- Транспортная маркировка может быть нанесена на бирку, прочно прикрепленную к ящику.
- 1.8.3 Маркировка тары ТП, поставляемых на экспорт, производится в соответствии с ГОСТ 14192 на языке, указанном в договоре.
- Пломбирование изготовителем не производится.
- Пломбирование производится потребителем после монтажа на месте эксплуатации.

1.9 Транспортировка, упаковка и хранение

- 1.9.1 Упаковка ТП должна проводиться в соответствии с чертежами изготовителя.
- 1.9.2 ТП должны подвергаться консервации. В соответствии с ГОСТ 9.014. ТП относятся: к группе III-1, к средней категории условий хранения и транспортирования, варианту внутренней упаковки ВУ 5.
- Вариант временной защиты В3-0, допускается В3-10.
- Срок защиты без переконсервации один год.
- 1.9.3 ТП следует упаковывать в закрытых вентилируемых помещениях при температуре окружающего воздуха от 15 °C до 40 °C и относительной влажности до 80 % при отсутствии в окружающей среде агрессивных примесей.
- 1.9.4 Перед упаковкой отверстие под кабельный ввод для ТП, Ехd исполнения, заказанных без кабельного ввода, закрывается колпачком или заглушкой, предохраняющей внутреннюю полость соединительной головы от загрязнения, а резьбу от механических повреждений.
- 1.9.5 Тп вместе с паспортом должен быть помещен в чехол из полиэтиленовой пленки толщиной от 0.15 до 0.4 мм по ГОСТ 10354, после чего шов чехла должен быть заварен.
- 1.9.6 ТП в чехле должны быть уложены в транспортную тару ящики из гофрированного картона по ГОСТ 9142.
- Количество ТП не должно превышать в транспортной таре -50 шт.

- Свободное пространство между ТП и коробкой должно быть заполнено амортизационным материалом или прокладками.
- 1.9.7 При консервации и расконсервации должны быть соблюдены требования безопасности согласно ГОСТ 9.014.
- Упаковка соответствует категории упаковки КУ-1 или КУ-3 (при поставке на экспорт) по ГОСТ 23170

ВНИМАНИЕ

Вскрытие упаковки произвести до момента установки.

После вскрытия упаковки не допускать загрязнения и повреждения ТП.

1.10 Гарантии изготовителя

- 1.10.1 Изготовитель гарантирует соответствие ТП требованиям настоящего руководства по эксплуатации, при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
- 1.10.2 Гарантийный срок эксплуатации со дня ввода термопары в эксплуатацию соответствует: для группы условий эксплуатации I, 66 месяцев; для группы условий эксплуатации II, 30 месяцев; для группы условий эксплуатации III, 24 месяца. Примечание:
- а) гарантийный срок может изменится по согласованию с заказчиком;
- б) гарантийный срок распространяется на термопары в диапазоне измеряемых температур (зависит от конструкции и модификации) и эксплуатации в средах не агрессивных к материалу защитной оболочки и к материалу защитной гильзы.
- 1.10.3 Гарантийный срок хранения 6 мес. со дня изготовления ТП.
- 1.10.4 Истечение гарантийного срока эксплуатации либо завершение эксплуатации в пределах гарантийной наработки означает прекращение всех гарантийных обязательств изготовителя, а также гарантийные обязательства не распространяются на дефекты, возникшие вследствие несоблюдения правил монтажа, эксплуатации, обслуживания, механических повреждений, неправильного хранения и воздействия стихийных природных явлений; при нарушении целостности изделия.

2 Использование по назначению

2.1 Меры безопасности

- 2.1.1 По способу защиты от поражения электрическим током ТП относятся к классу III ГОСТ 12.2.007.0.
- 2.1.2 Замену, присоединение и отсоединение ТП от объекта следует производить при отключенном электропитании и отсутствии давления измеряемой среды.
- 2.1.3 Взрывозащищенные ТП оборудованы внешними резьбовыми элементами заземления.
- Не допускается использование для заземления крепежных деталей и составных частей ТП.
- Не снимать крышку ТП во взрывоопасной зоне, если находится под напряжением.
- Перед подключением полевого коммуникатора во взрывоопасной среде убедится, что все изделия установлены в соответствии с требованиями ТР ТС 012/2011 искро- и взрывобезопасности.
- Следует проверить, соответствуют ли условия эксплуатации ТП действующим сертификатам соответствия на применение в опасных зонах.
- Для соответствия требованиям по взрывозащите крышка ТП должны быть полностью закручена.

ВНИМАНИЕ!

Несоблюдение указаний по установке может привести к серьезным травмам или смертельному исходу.

- Монтаж должен выполняться только квалифицированным персоналом.
- Утечка технологической среды может привести к серьезным травмам или смертельному исходу.
- Перед подачей давления проверить на плотность и герметичность защитные гильзы во избежание утечки среды.

2.2 Монтаж изделия

- 2.2.1 Перед началом монтажа ТП необходимо проверить на наличие повреждений, правильности маркировки, комплектности при поставке.
- Видимые повреждения следует немедленно зафиксировать документально.
- Необходимо осмотреть, допускается ли монтаж ТП непосредственно в технологическую среду, или необходимо использовать термометрическую гильзу.
- 2.2.2 Для цилиндрической резьбы необходимо использовать уплотнения.
- Если ТП и термометрическая гильза поставляются в виде собранного блока, то такие уплотнения устанавливаются на заводе (при оформлении соответствующего заказа).
- Заказчик обязан проверить пригодность уплотнения к условиям эксплуатации и при необходимости заменить его на соответствующее уплотнение.

2.2.3 Коническая резьба

- Заказчик должен проверить необходимость применения дополнительного уплотнения, в случае недостаточной герметичности, с помощью ленты РТFE, пеньки для резьбы NPT или другой конической резьбы, произвести уплотнение.
- 2.2.4 При использовании фланцевых соединений фланец термометрической гильзы должен совпадать с ответным фланцем со стороны технологического оборудования. Используемые уплотнения должны соответствовать особенностям технологического процесса и геометрическим параметрам фланцев.
- 2.2.5 Приварная термометрическая гильза должна быть приварена непосредственно к стенке трубопровода или резервуара либо закреплена в сварной муфте. Должны быть соблюдены технические условия, приведенные в соответствующих паспортах материалов, а также действующие руководящие ГОСТы и стандарты, касающихся процедур сварки, термической обработки, сварных швов и т. п.

ВНИМАНИЕ!

Некорректно спроектированные, некачественно выполненные или негерметичные сварные швы могут привести к неконтролируемой утечке технологической среды.

- Сварочные работы должны выполняться только квалифицированным техническим персоналом.
- При проектировании сварного шва необходимо учитывать требования, обусловленные характером процесса.
- 2.2.6 Перед установкой термопары проверить целостность токоведущей цепи мегаомметром. При наличии обрыва ТП заменить новым.
- Примечание:
- Перед установкой ТП с клеммной головой необходимо снять (открыть) крышку клеммной головы.
- Перед установкой ТП на примере клеммной головы исполнения М2 (см. страницу 31) необходимо открутить стопорный винт, который предохраняет крышку клеммной головы от самоотвинчивания. Стопорный винт расположен в углублении клеммной головы в соответствии с рисунком 1г ст.30
- 2.2.7 Установить ТП на объекте.
- 2.2.8 Подготовить уплотнение (уплотнительное кольцо) кабельного ввода под применяемый кабель.
- 2.2.9 Произвести подсоединение ТП к измерительному прибору (схемы внешних и внутренних электрических соединений ТП приведены на странице 22).
- 2.2.10 Для подключения следует использовать кабельные вводы указанного диаметра.
- (например: M20x1,5, диаметр кабеля от 7 до 13 мм).

- 2.2.11 Плотно затяните кабельный ввод в указанной области зажима (диаметр кабеля должен соответствовать кабельному уплотнению).
- 2.2.12 Перед вводом в оболочку через кабельный ввод необходимо свернуть кабель в петлю («водяная ловушка»).
- Это гарантирует защиту от проникновения влаги в кабельное уплотнение.
- 2.2.13 ТП необходимо устанавливать таким образом, чтобы кабельный ввод не был направлен вверх.
- Не перекручивать кабели. Используйте только круглый кабель.
- Заменяйте неиспользуемые кабельные вводы сертифицированными заглушками.
- Неоднократно открывать и закрывать ТП допускается, однако это негативно влияет на степень защиты.
- При подключении взрывозащищенных ТП, комплектуемых кабельным вводом с фиксацией брони, дополнительная фиксация от выдергивания обеспечивается фиксацией брони кабеля.
- При комплектации ТП трубным кабельным вводом, кабель прокладывается в трубе, которая фиксируется с помощью трубного кабельного ввода.
- 2.2.14 ТП исполнения Ех устанавливаются во взрывоопасных зонах помещений и наружных установок в соответствии с требованиями ГОСТ IEC 60079-14 и других нормативных документов, регламентирующих применение оборудования во взрывоопасных зонах.
- 2.2.15 При монтаже необходимо руководствоваться:
- нормативными документами, действующими в данной отрасли;
 - настоящим РЭ.
- ТП могут устанавливаться в зонах в соответствии с маркировкой.
- 2.2.16 Заземлить ТП с помощью внутреннего или наружного заземляющего зажима.

ВНИМАНИЕ!

ТП с видом взрывозащиты «взрывонепроницаемая оболочка» (Exd) присоединение электрических цепей необходимо осуществлять через кабельные вводы, сертифицированные в установленном порядке на соответствие требованиям взрывозащиты «взрывонепроницаемая оболочка» и не изменяющие вид взрывозащиты ТП.

• Электрическое питание ТП с видом взрывозащиты «искробезопасная электрическая цепь» (Ехіа) необходимо осуществлять через барьеры искрозащиты, сертифицированные в установленном порядке на соответствие требованиям взрывозащиты «искробезопасная электрическая цепь».

2.2.17 При эксплуатации ТП

взрывозащищенного исполнения необходимо принимать меры защиты, согласно специальным условиям безопасного при- менения, указанным под знаком «Х».

3 Техническое обслуживание

- 3.1 Во время эксплуатации ТП в специальном техническом обслуживании не нуждаются, за исключением периодического внешнего осмотра с целью контроля:
- Проверка ТП и измерительной цепи должна выполняться через регулярные промежутки времени (в зависимости от соответствующих условий использования):
- Визуальный осмотр ТП или оболочки ТП на механический и химический износ.
- Проверка температурного дрейфа путем сравнения с откалиброванным ТП.
- Проверка визуально на механические и химические изменения электрической проводки, а также ее соединительных элементов, соединительных зажимов.
- наличия заземления оболочки ТП;
- наличия пломб;
- наличия маркировки взрывозащиты (для TП исполнения Ex)
- работоспособности ТП.
- Периодичность осмотров в зависимости от условий эксплуатации, но не реже одного раза в месяц.

ВНИМАНИЕ!

Запрещается эксплуатация ТП с поврежденными деталями или неисправностями.

3.1 Меры безопасности

- 3.1.1 Замену, отсоединение, присоединение ТП к технологическим линиям, объектам, производить при полном отсутствии избыточного давления, при остановленном технологическом оборудовании.
- 3.1.2 Все работы по установке ТП должны выполняться опытными специалистами, имеющими соответствующую квалификацию и допуск.

3.2 Пломбировка ТП

- 3.2.1 Произвести пломбировку ТП с Ех исполнением.
- Пломбировка ТП во взрывозащищенном исполнении обязательна.
- Пломбировка может осуществляться с помощью проволоки или другим методом пломбирования. Расположение контровочных отверстий указано на странице 30.
- Пломбировка ТП на примере исполнения клеммной головы Д (варианты исполнения клеммных голов см. ст. 30) осуществляется в следующей последовательности:
- Продеть проволоку в контровочные отверстия, расположенные на шестиграннике штуцера (см. рисунок на ст. 30), затем в контровочное отверстие винта клеммной головы (см. рисунок ст. 30);

- Свободные концы проволоки скрутить так, чтобы исключить перемещение винта клеммной головы и тем самым исключить открытие крышки без повреждения контура, образованного проволокой;
- Закрепить пломбу так, чтобы ее нельзя было снять без повреждения контура, образованного проволокой.
- Пломбировка ТП с исполнением клеммной головы M2 (варианты исполнения клеммных голов см. на странице 22) осуществляется в следующей последовательности:
- Обернуть петлей проволоку вокруг кабельного ввода (см. рисунок на странице 30).
- Затем один из свободных концов проволоки продеть в контровочные отверстия шестигранника штуцера (см. рисунок на странице 30) обернуть вокруг шестигранника штуцера по часовой стрелке и проложить в паз крышки клеммной головы, второй конец проволоки проложить во втором пазу крышки клеммной головы;
- Свободные концы проволоки скрутить так, чтобы исключить перемещение крышки клеммной головы и гайки ввода кабельного ввода и тем самым исключить открытие крышки и откручивание кабельного ввода без повреждения контура, образованного проволокой;
- Закрепить пломбу так, чтобы ее нельзя было снять без повреждения контура, образованного проволокой.
- Указанный способ пломбировки не только защищает ТП от не санкционированного доступа, но и обеспечивает фиксацию кабельного ввода от самоотвинчивания.
- 3.2.3 Пломбировка термопреобразователей с исполнением клеммной головы М (варианты исполнения клеммных голов см. странице 22) осуществляется в следующей последовательности:
- Обернуть петлей проволоку вокруг кабельного ввода (см. рисунок 3г на странице 30).
- Свободные концы проволоки сложить вместе и обернуть вокруг корпуса кабельного ввода по часовой стрелке.
- Затем один из свободных концов проволоки продеть в контровочные отверстия стопорного винта крышки клеммной головы (см. рисунок 3г на странице 30).
- Свободные концы проволоки скрутить так, чтобы исключить перемещение крышки клеммной головы и гайки ввода кабельного ввода и тем самым, исключить открытие крышки и откручивание кабельного ввода без повреждения контура, образованного проволокой:
- Закрепить пломбу так, чтобы ее нельзя было снять без повреждения контура, образованного проволокой

3.3 Проверка работоспособности ТП

- 3.3.1 Подключить соединительный кабель к измерительному вторичному прибору.
- Вторичный прибор должен обеспечить номинальный измерительный ток через чувствительный элемент ТП в соответствии с требованиями 1.2.15.
- 3.3.2 Отсчитать по шкале вторичного прибора измеренное значение температуры на объекте и сравнить с допустимым значением.

3.4 Техническое освидетельствование

3.4.1 ТП подлежит государственной поверке или поверке другими уполномоченными органами, организациями, имеющими право поверки.

4. Транспортирование и хранение

- 4.1 Условия транспортирования термопар должны соответствовать группе исполнения N2 по ГОСТ 12997.
- 4.2 ТП транспортируются всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозок грузов на данном виде транспорта.
- Во время погрузочно-разгрузочных работ и транспортирования ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.
- Способ укладки ящиков на транспортирующее средство должен исключать их перемещение.
- Условия транспортирования по условиям хранения 5 ГОСТ 15150.
- 4.3 Хранение ТП на стеллажах и в хранилищах по Γ OCT 12997.
- 4.4 Термопары следует хранить в упаковке изготовителя по условиям хранения 3 ГОСТ 15150. Воздух помещения не должен содержать агрессивных примесей.

5. Утилизация

ТП не представляет опасности для жизни и здоровья людей и для окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем изделие.

5.1 Указания по Техническому регламенту (ROHS) ТР ЕАЭС 037/2016 Об ограничении применения опасных веществ в изделиях электротехники и радиоэлектроники, поставляемые изделия производства ООО "Поинт" не подпадают под действие данного регламента.

6. Индикатор для ТП

6.1 Описание меню модуля индикации

Данный прибор предназначен для вывода информации об измеренной величины на дисплей с преобразователя температуры (метрологические характеристики индикатора не нормируются, не вносит искажений в измеренный результат).

- Он способен отображать:
 - измеренную величину*;
 - процент от диапазона;
 - -выходной ток преобразователя.
- *- в зависимости от типа преобразователя измеренная величина может принимать следующие значения:
 - первичная величина (сопротивление);
 - температура в °С;
 - пересчитанная величина.
- Имеет возможность поворота на 0, 90,180 и 270 градусов.

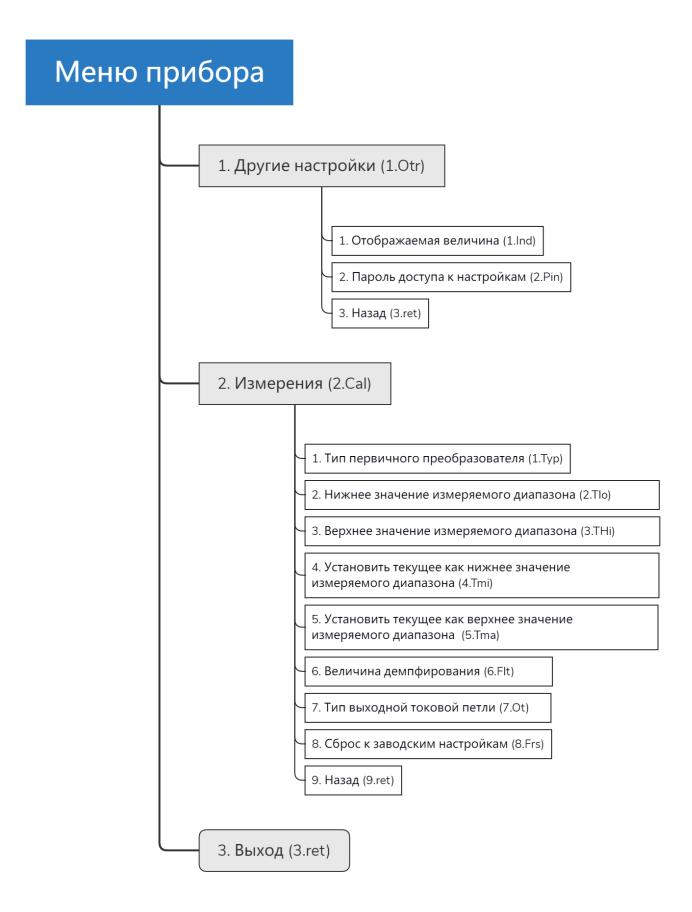
6.2 Меню и управление модуля индикации

- 6.2.1 Индикатор имеет 3 кнопки управления: "←" влево, "↓" ввод и "→" вправо.
- 6.2.2 В режиме отображение текущих показаний индикатора:
- долгое удержание в течении более 5 сек кнопки "←" влево и затем отпускание произведет установку текущего измеренного значения как верхнего предела измерения, на дисплее кратковременно отобразится надпись

 долгое удержание в течении более 5 сек кнопки "\"," ввод и затем отпускание произведет установку текущего измеренного значения как нижнего предела измерения, на дисплее кратковременно отобразится надпись

«ԷԼ¤» (в ПО версии 1.32 и младше);

- 6.2.3 Для входа в меню необходимо кратковременно нажать на кнопку "↓". Значение пароля по умолчанию равно нулю «0000» и будет осуществлен вход, в противном случае будет запрошен пароль доступа, установленный пользователем (в ПО версии до 1.11 пароль для доступа неизменяем и равен «0123»).
- 6.2.4 Переход по пунктам осуществляется кнопками "←" и "→". Вход в подпункт и редактирование текущих значений кнопкой "↓".
- 6.2.5 Редактирование значения осуществляется кратковременными нажатиями:
- "


 —" для изменения текущего значения либо увеличения на единицу для числового значения.
- "←" и "→" для перехода между разрядами при редактировании числового значения,
- длительное нажатие (дольше 2 сек) и отпускание кнопки "↓" подтверждение ввода. (В ПО версии до 1.10 одновременное нажатие "←" + "→" подтверждение ввода).

На индикаторе кратковременно высветится надпись « **БР** ».

6.2.6 При отсутствии нажатий на кнопки в течение 20 секунд произойдет выход из меню устройства.

6.3 Структура меню для датчика температуры

6.4 Параметры меню для индикатора датчика температуры

Пункт меню	Подпункт меню	Отображение на экране	Варианты значений	Описание
1. Другие настройки		WEr.		
	1. Отображаемая величина	lind	FEYL	температура
			r8	 первичная величина (сопротивление или напряжение)
				выходной ток
			PE-[процент от измеряемого диапазона
	2. Пароль доступа к настройкам	2P, n	0000	значение по умолчанию
			000 I 9999	диапазон возможных пользовательских значений
	3. Назад	3-EL		возврат в пункт меню "1. Другие настройки"
2.Настройки измерения		2CAL		
измерения	1. Тип первичного преобразователя **	ŒSP	значение	значение в зависимости от версии ПО согласно таблице 4
	2. Нижнее значение измеряемого диапазона	2.ELo	числовое значение	значение по умолчанию
			000 I 9999	диапазон возможных пользовательских значений
	3. Верхнее значение измеряемого диапазона	3LH,	числовое значение	значение по умолчанию
			000 I 9999	диапазон возможных пользовательских значений
	4. Установить текущее значение как нижнее значение	465	no	значение по умолчанию
			YES	пользовательское значение
	5. Установить текущее значение как верхнее значение	SEAR	חם	значение по умолчанию
			YE5	пользовательское значение
	6. Величина демпфирования (в сек)	5FLŁ	0000	значение по умолчанию
			000 I 9999	диапазон возможных пользовательских значений <1 – демпфер отключен
	7. Тип выходной петли	JDF	4-20	значение по умолчанию линейно возрастающая
			d5bL	конфигурация неактивна
			20-4	линейно убывающая
			d5bL	конфигурация неактивна
	8. СБРОС К ЗАВОДСКИМ УСТАНОВКАМ*	8F-5	πο	значение по умолчанию
			YE5	пользовательское значение
	9.Назад	9-EF		возврат в пункт меню "2. Настройки измерения"
3. Выход		3-EL		выход

^{* -} для сброса прибора к заводским настройкам необходимо при редактировании данного параметра установить его значение в «ЧЕБ " и сохранить. После этого будет кратковременно отображена надписи "ГБЕ ", "БЯЬЕ" и настройки прибора будут

^{** -} значение меняется только в конфигурациях датчиков температуры, предусматривающих возможность замены первичного преобразователя, в противном случае на экране высвечивается мигающее текущее значение температуры и блокируется возможность изменения значения.

Таблица 6 – тип первичного преобразователя

	вичного преобразователя пичина на индикаторе	
версия ПО индикации 1.36 и ниже	версия ПО индикации 1.37 (с 06.2024г) и выше	Описание отображаемой величины
oHĀ5	1	Ohms, омы (сопротивление)
507	2	50 М, термопреобразователь медный $R_0 = 50$ Ом; $\alpha = 0.00428$ °C ⁻¹
1007	3	$100 M$, термопреобразователь медный $R_0 = 100 \ Om; \ \alpha = 0.00428 \ ^{\circ}C^{-1}$
50P	4	50Π , термопреобразователь платиновый $R_0 = 50$ Ом; $\alpha = 0.00391$ °C ⁻¹
100P	5	100Π , термопреобразователь платиновый $R_0 = 100$ Ом; $\alpha = 0{,}00391$ °C ⁻¹
500P	6	500Π , термопреобразователь платиновый $R_0 = 500 \; \text{Om}; \; \alpha = 0{,}00391 \; ^{\circ}\text{C}^{-1}$
lcP	7	1000Π , термопреобразователь платиновый $R_0 = 1000 \text{ Om}; \alpha = 0{,}00391 \text{ °C}^{-1}$
P50	8	$Pt50$, термопреобразователь платиновый $R_0 = 50 \ \mathrm{Om}; \ \alpha = 0.00385 \ ^{\circ}\mathrm{C}^{-1}$
P 100	9	$Pt100$, термопреобразователь платиновый $R_0 = 100 \; \text{Om}; \; \alpha = 0{,}00385 \; ^{\circ}\text{C}^{-1}$
P500	10	$Pt500$, термопреобразователь платиновый $R_0 = 500 \; \text{Om}; \; \alpha = 0{,}00385 \; ^{\circ}\text{C}^{\text{-1}}$
P (c	11	$Pt1000$, термопреобразователь платиновый $R_0 = 1000 \; \text{Om}; \; \alpha = 0{,}00385 \; ^{\circ}\text{C}^{-1}$
ā 100	12	$Ni100$, термопреобразователь никелевый $R_0 = 100 \; \text{Om}; \; \alpha = 0.00617 \; ^{\circ}\text{C}^{-1}$
A500	13	Ni500, термопреобразователь никелевый $R_0 = 500 \text{ Ом}; \ \alpha = 0,00617 \ ^{\circ}\text{C}^{-1}$
<u>n lc</u>	14	$Ni1000$, термопреобразователь никелевый $R_0 = 1000 \; \mathrm{Om}; \; \alpha = 0,00617 \; ^{\circ}\mathrm{C}^{-1}$
UE I	15	mV, милливольты
HL_L	16	L, термопреобразователь типа ТХК (L)
	17	J, термопреобразователь типа ТЖК (J)
HH_n	18	N, термопреобразователь типа ТХХ (N)
HH_L	19	К, термопреобразователь типа ТХА (K)
<u> </u>	20	S, термопреобразователь типа ТПП (S)
<u> </u>	21	R, термопреобразователь типа ТПП (R)
Pr_b	22	В, термопреобразователь типа ТПР (В)
<u> </u>	23	А1, термопреобразователь типа ТВР (А1)
<u> </u>	24	А2, термопреобразователь типа ТВР (А2)
<u> </u>	25	А3, термопреобразователь типа ТВР (А3)
<u> </u>	26	Т, термопреобразователь типа ТМК (Т)
HE_E	27	Е, термопреобразователь типа ТХК _н (Е)
<u> </u>	28	М, термопреобразователь типа ТМК (М)

Руководство по эксплуатации 6.5 Список возможных ошибок

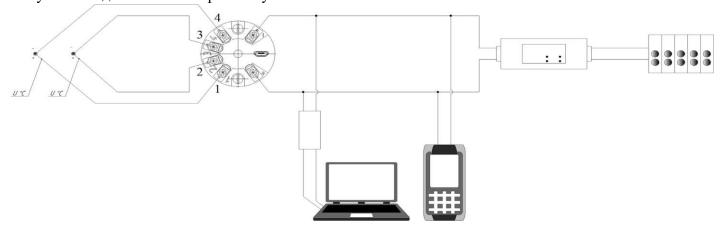
В процессе работы преобразователь постоянно проводит самотестирование на наличие неисправоностей, в случае обнаружения неполадок в работе информация об этом будет отображена на дисплее согласно таблицы 7.

Таблица 7 – список ошибок

Ошибка	Описание	Пути решения проблемы
Errl	Критическая ошибка инициализации устройства	Проверить контакт индикатора и преобразователя и перезапустить прибор
Err2	Ошибка связи индикатора и преобразователя	Проверить контакт индикатора и преобразователя
Err3	Ошибка контрольной суммы ПО преобразователя	Необходим сброс на заводские настройки и настройка преобразователя
0b_ñ	Обнаружен обрыв в подключении первичного преобразователя (для преобразователя температуры)	Проверить подключение первичного преобразователя
55_5	Обнаружено короткое замыкание в подключении первичного преобразователя (для преобразователя температуры)	
5_0b	Обнаружен обрыв в датчике компенсации холодного спая/температурной компенсации	Проверить подключение датчика компенсации
5_06	Обнаружено короткое замыкание в датчике компенсации холодного спая/температурной компенсации	
ouL	Невозможно полностью отобразить число	Проверить подключение сенсора и настройки прибора
ECFG	Ошибка контрольной суммы блока настроек прибора	Необходим сброс на заводские настройки и настройка преобразователя
ESEn	Ошибка чувствительного элемента сенсора давления	Необходим ремонт
EdRC	Ошибка ЦАП	Необходим ремонт

6.6 Работа с термопарами по HART® протоколу.

- В термопарах применен HART®-протокол, полностью соответствующий спецификации HART®-протокола версии 5 (или выше).
- Сигнал может приниматься и обрабатываться любым устройством, поддерживающим данный протокол, в том числе, ручным портативным HART®-коммуникатором или персональным компьютером (ПК) через стандартный последовательный порт и дополнительный HART® модем. HART®-протокол допускает одновременное наличие в системе двух управляющих устройств: системы управления (ПК с HART®-модемом) и ручного HART®-коммуникатора.
- Эти два устройства имеют разные адреса и осуществляют обмен в режиме разделения времени канала связи, так что термопара может принимать и выполнять команды каждого из них.
- Для конфигурации термопар может использоваться программа «HART®config», которая работает под OC Windows7/Vista/XP/Windows10 (может быть использовано любое HART совместимое программное обеспечение).
- Для работы программы с преобразователем необходим модем, подключаемый к последовательному СОМ-порту или USB-порту ПК (для этих целей можно использовать HART®-модемы HM-10/R, HM-10/B или HM-10/U, или любой модем других производителей).
- Модем может быть подключен к термопаре в любой точке токовой петли с использованием нагрузочного сопротивления: на пульте управления, измерительном стенде или непосредственно к термопаре (рисунок 3).
- Программа «HART®config» имеет удобный интуитивно понятный интерфейс пользователя, в программе реализована русскоязычная система справки. Полные описание работы программы изложено в Руководстве оператора на программу «HART®config».


- Схемы электрические подключений термопар к ПК для выполнения настройки приведены на рисунке 3.
- Сопротивление нагрузки в цепи питания термопар для подключения HART® устройств (коммуникатора, HART®-модема), должно быть не менее 240 Ом, но не более 600 Ом, при номинальном значении 250 Ом.

6.2 Список HART®-команд.

- Список доступных команд HART®-протокола приведены РЭ коммуникатора (список доступных команд может быть расширен с изменением версии встроенного ПО).
- «Многоточечный» режим работы с HART®-протоколом.
- В «многоточечном» режиме термопары работают в режиме только с цифровым выходом. Аналоговый выход автоматически устанавливается в 4 мА (0 мА при выходе 0-5 мА) и не зависит от входной температуры. Информация о температуре считывается по НАRT®-протоколу. К одной паре проводов может быть подключено до 15 термопар. Количество термопар определяется падением напряжения в линии связи, а также напряжением и мощностью блока питания.
- Каждая термопара в «многоточечном» режиме имеет свой уникальный адрес от 1 до 15, и обращение к термопаре идет по этому адресу.
- Термопары в обычном режиме имеют адрес 0, если им присваивается адрес от 1 до 15, то термопары автоматически переходят в «многоточечный» режим и устанавливают выход в 4 мА (0 мА при выходе 0-5 мА). Коммуникатор или АСУТП определяют термопары, подключенные к линии, и могут работать с каждым из них.
- 1: Подключение по протоколу HART® к линии выходного сигнала 4–20 мА.

Сопротивление нагрузки не менее $250~\Omega$. в соответствии с рисунком 3.

• Рисунок 3 Подключение по протоколу HART®

Приложение А Условное обозначение ТП

• Пример записи условного обозначения ТП-Б

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	20	21	22
ТП-Б-	Exdb	IIC	T6-	TXA(K)	-1-	И-	Π-	-(от -40 до +800)	-200	/10-	(60	8)	-ПШ.	200/	12.	M20x1,5	-M	$-M\Gamma(3-7)$	-1000	-IP68

• Пример записи условного обозначения ТП-Б-У

	1		_														
1	2	3	4	5	6	7	8	9	10	11	14	15	17	18	19	20	22
ТП-Б-У-	Exai	IIC	T6-	(4-20)мА-(НАКТ)	$-(\pm 0,5)$	-И	-П	-(от 0 до +400)	-100	/10	-НШ.	80.	1/2NPT	-Ти	-ИЖЦ	МГБ(7-13)(13-17)	IP65

№ п.п	Параметр	Возможные значения		
	1	2	3	
1.	Обозначение типа (модификация)	ТП-Б	ТП-Б-У	
2.	Взрывозащита	Exdb, Exdbia, Exia – (газовые среды) Extb, Extbia – (пылевые среды) (при отсутствии не указывается)		
3.	Группа взрывозащищенного оборудования	IIA, IIB, IIC, IIIA, IIIB, IIIC (при отсутствии не указывается)		
4.	Температурный класс	T1, T2, T3, T4, T5, T6 - (газовые среды) T85°СТ450°С - (пылевые среды)		
5.	НСХ для ТП-Б; диапазон выходного сигнала для ТП-Б-У	TXA(K), TXK(L), TЖK(J), THH(N), TXKH(E), TMK(T), TΠΠ(S), TΠΠ(R)	(4-20) MA, $(0-5)$ MA, (0-20) MA, $(0,2-5)$ B, (0,2-10) B, HART ¹ , $\sqrt{2}$, iso ⁶	
6.	Класс допуска для ТП-Б ³ ; основная приведенная погрешность для ТП-Б-У, %	1, 2, 3	$\pm 0,25;\pm 0,5;\pm 1$	
7.	Структура ЧЭ	И, ИИ, ИИИ, Н, ИН, 2И, 2Н, 3Н, С, СС, 2С		
8.	Исполнение монтажной части	П, П(Р), П(Б), Пв, Б, К, Ку, Кн, Кну, Пу, Бс, Пл, Пм, Пн, Пну, В, Пк, П2к, Пк(Б), Пц, Пи, П2К		
9.	Диапазон измерений ⁴ , °С	от -200 до +1300	от -200 до +1300	
10.	Длина монтажной части ⁵ , мм	6, 10, 16, 20, 25, 32, 40, 50, 60, 80, 100, 120, 160, 200, 250, 320, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150		
11.	Диаметр монтажной части, мм	0.5, 1, 1.5, 2, 3, 4,4.5, 4.6, 5, 6, 7, 8, 10, 12, 16, 20, 22, 25, 30, 35		
12.	Длина ступени, мм	10, 20, 30, 40, 50, 60 (при отсутствии не указывается)		
13.	Диаметр ступени, мм	6, 8 (при отсутствии не указывается)		
14.	Тип крепления	ПШ, ПГ, НШ, НГ, ПрШ, ПрГ, Бр, ПШп, ПШв, ПШпв, ПЩШ, ПЩрШ, ПЦФ, НШпл, ПГш, Ш, Ф, ПрШт, Фв, Ф(Clamp), СВ		
15.	Длина наружной части, мм	10, 16, 20, 25, 32, 40, 50, 60, 80, 100, 120, 160, 200, 250, 320, 400, 500, 630, 800		
16.	Диаметр наружной части, мм	6; 8; 10; 12; 14; 16; 20; 22; 24; 30; 32		
17.	Типоразмер крепления	M6x1; M8x1; M12x1,5; M14x1,5; M16x1,5; M18x1,5; M20x1,5; M24x1,5; M27x2; M33x2; M39x2; G1/8; G1/4; G3/8; G1/2; G3/4; G1; 1/8NPT; 1/4NPT; 3/8NPT; 1/2NPT; 3/4NPT; 1 NPT; K1/8; K1/4; K3/8; K1/2; K3/4; K1; R1/8; R1/4; R1/2; R3/4; R1		
18.	Исполнение клеммной головы	А, Б, Бпр, Бм, Г, Д, Е, Ж, З, И, К, Л, М, М2, Н1, Н6, Н3, Нп, Л1, Л2, Л3, Л4, Л8, 4P, Км, Кб, Кмет, Кт, Лк1, Лк2, Лк3, USB, И, Ак1, Ак3, Т, ТН, П, Р, О, С, Ф, Ц, Я, Яб	Ак2, Г, Д, Е, 3, М, М2, Н1, Н6, И, Ни, Нп, Т, Ти, П, Р, С, П, Пи, Си, О, Ои, Ри, Ф, Фи, Ц, Ши, Я, Я6, ТН, ТНи, Н3и	
19.	Вид индикации	-	ижц, исц	
20.	Кабельный ввод	МВ, ПГ, ЛГ, МГ, МГБ, МГТ, МГФ, МГБ-П, МГМ, МГБ-М, DIN (A), DIN (C) (при отсутствии не указывается)		
21.	Длина компенсационного кабеля, мм	100, 250, 500, 1000, 2000, 3000, 5000, 10000, 15000		
22.	Степень защиты IP	IP00, IP20, IP45, IP54, IP65, IP68, (1	по согласованию с заказчиком IPX9)	
_				

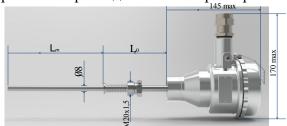
- примечания

 1 Выходной сигнал в пункте 5 может иметь убывающую характеристику.

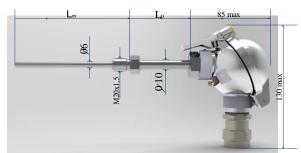
 2 Знак «³» означает, что в ТП-Б-У с унифицированным выходным сигналом совмещен цифровой протокол передачи данных НАRT.

 3 Знак «³» означает, что в ТП-Б-У унифицированный выходной сигнал имеет нелинейную (корнеизвлекающую) зависимость.

 4 Знак «³» означает, что для ТП-Б ТХК(L), ТПП(S), ТПП(R) класс допуска 1 отсутствует, ТП-Б ТЖК(J), ТПП(S), ТПП(R) класс допуска 3 отсутствует.


 5 Знак «⁴» означает, что диапазон измерений для ТП-Б выбирается по таблице 2. По требованию заказчика возможно изготовление ТП-Б и ТП-Б-У специального назначения с диапазоном измерений, находящимся внутри указанных диапазонов, в соответствии с типом термопары.
- 6 Знак «5» означает, что в случае измерения температуры в нескольких точках длины измерения маркируются через «/»
- 7 Для исполнений без взрывозащиты значения параметров 2, 3, 4 не указывается. 8 Знак «6» означает, что входные и выходные цепи гальванически развязаны.
- 9 При отсутствии крепежной части значения параметров 14, 15, 16 не указываются.
 10 Допускается не указывать параметр 22.
- 11 При отсутствии компенсационного кабеля параметр 21 не указывается.
- 12 В обозначении клеммой головы буква "и" обозначает наличие индикатора.
- 13 В пункте 19 «вид индикации» ИЖЦ обозначает жидкокристаллический индикатор,

ИСЦ - светодиодный индикатор.



Приложение Б Габаритные размеры ТП

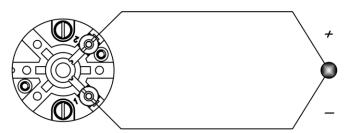
• Габаритные и присоединительные размеры TП.

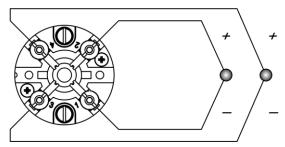
• Рисунок 1б - Термопара с креплением «штуцер с пружиной», с исполнением клеммной головы М.

• Рисунок 26 - Термопара с креплением «неподвижный штуцер», с исполнением клеммной головы Д

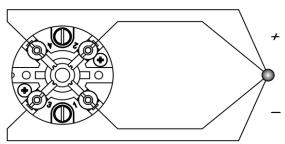
- ТП специального исполнения.

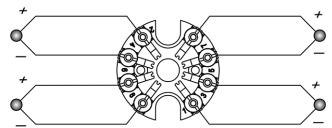
Варианты исполнение клеммных голов


Таблица 4 пример исполнения голов ТП

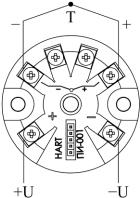

• Исполнение

- 1. ТП с хомутом;
- 2. ТП с приваренной металлической площадкой;
- 3. ТП прилегающий, под крепёж.

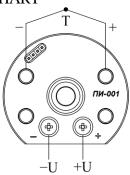

Приложение В Электрические схемы для ТП внутренних и внешних соединений.


• Рисунок 1в - ТП с одиночным спаем схемы подключения.

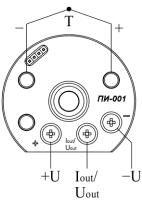
• Рисунок 2в - ТП с двойным спаем схемы подключения.



• Рисунок 3в - ТП с двойным спаем по 4-х проводной схеме подключения



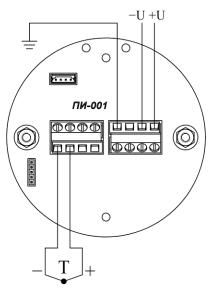
• Рисунок 4в - ТП с двойными спаями по 4-х проводной схеме подключения


Схемы подключения входного сигнала ТП к преобразователю $\Pi W\text{-}001$

• Рисунок 5в - преобразователь в корпусе К, выходной сигнал 4-20 мА – HART

• Рисунок 6в - преобразователь в корпусе E, выходной сигнал 4-20 мA

- Рисунок 7в - преобразователь в корпусе E, выходной сигнал 0-5 мA, 0-20 мA, 0,2-5 B и 0,2-10 B



• Рисунок 8в - преобразователь в корпусе Д, выходной сигнал 4-20 мА – HART

- Рисунок 9в - преобразователь в корпусе Д, выходной сигнал 0-5 мА, 0-20 мА, 0,2-5 В и 0,2-10 В

• Рисунок 10в - преобразователь в корпусе Π , Π и, выходной сигнал 4-20 мА— HART

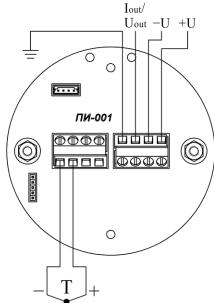
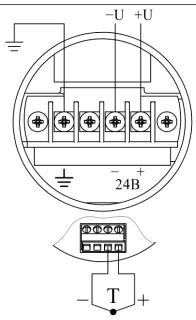
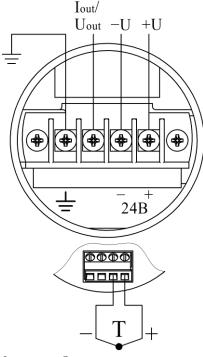




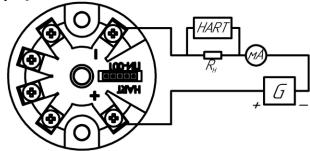
 Рисунок 11в - преобразователь в корпусе П, Пи, выходной сигнал 0-5 мА, 0-20 мА, 0,2-5 В и 0,2-10 В

• Рисунок 12в - преобразователь в корпусе T, Tu, выходной сигнал 4-20 мА – HART

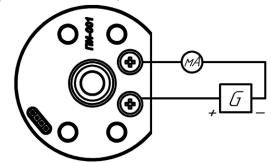
• Рисунок 13в - преобразователь в корпусе T, Tu, выходной сигнал 0-5 мA, 0-20 мA, 0,2-5 В и 0,2-10 В

Схемы подключения общепромышленных преобразователей ПИ-001

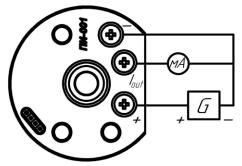
мА – миллиамперметр;


V – вольтметр;

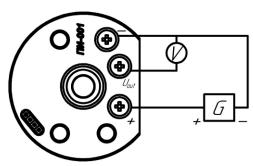
Rн – сопротивление нагрузки для подключения НАRТ-модема с выходным сигналом 4-20 мA, 0-5 мA и 0-10 мA (не менее 250 Ом);


Rн* – сопротивление нагрузки для подключения НАRТ-модема с выходным сигналом 0,2-5 В и 0,2-10 В (не менее 10 кОм);

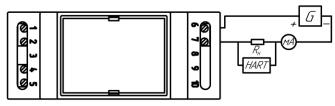
G – источник питания;


НАRТ – НАRТ-модем / коммуникатор. Примечание: при отсутствии НАRТ протокола в преобразователях ПИ-001 сопротивление нагрузки Rн и Rн* можно не учитывать. Для преобразователей ПИ-001 в корпусе K, E, Д, И, 4Р подключение заземления не требуется.

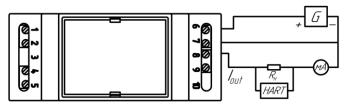
• Рисунок 14в - преобразователь в корпусе К с выходным сигналом 4-20 мА – HART

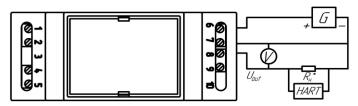


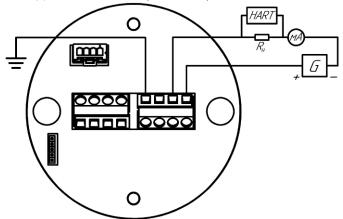
• Рисунок 15в - преобразователь в корпусе E с выходным сигналом 4-20 мА

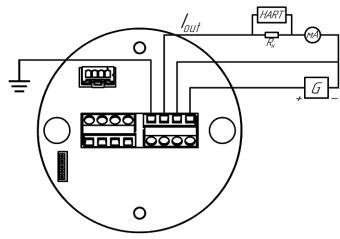


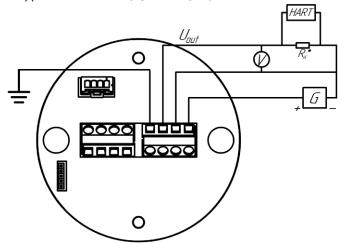
• Рисунок 16в - преобразователь в корпусе E с выходным сигналом 0-5 мА и 0-20 мА

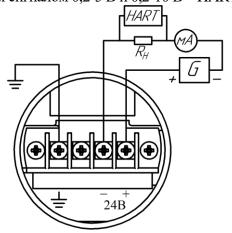



• Рисунок 17в - преобразователь в корпусе E с выходным сигналом 0,2-5 B и 0,2-10 B

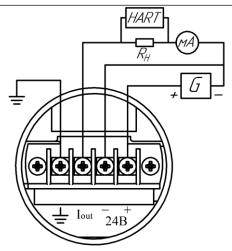

• Рисунок 18в - преобразователь в корпусе Д с выходным сигналом 4-20 мА — HART


• Рисунок 19в - преобразователь в корпусе Д с выходным сигналом 0-5 мА и 0-20 мА – HART

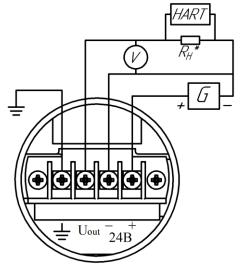

• Рисунок 20в - преобразователь в корпусе Д с выходным сигналом 0,2-5 B и 0,2-10 B – HART


• Рисунок 21в - преобразователь в корпусе Π , Π и с выходным сигналом 4-20 мА – HART

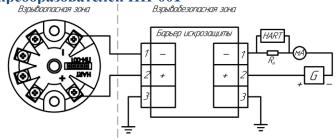
• Рисунок 22в - преобразователь в корпусе П, Пи с выходным сигналом 0-5 мА и 0-20 мА – HART



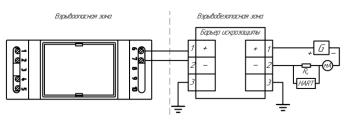
• Рисунок 23в - преобразователь в корпусе П, Пи с выходным сигналом 0,2-5 В и 0,2-10 В – HART



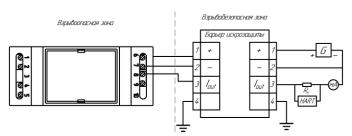
• Рисунок 24в - преобразователь в корпусе T, Tu с выходным сигналом 4-20 мА – HART

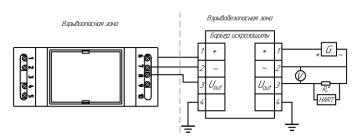


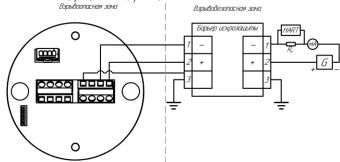
• Рисунок 25в - преобразователь в корпусе T, Tи с выходным сигналом 0-5 мA и 0-20 мA – HART



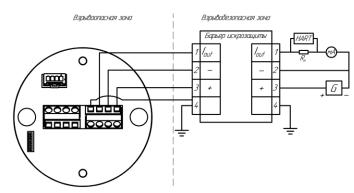
• Рисунок 26в - преобразователь в корпусе T, Tи с выходным сигналом 0,2-5 B и 0,2-10 B – HART


Схемы подключения взрывозащищенных преобразователей ПИ-001

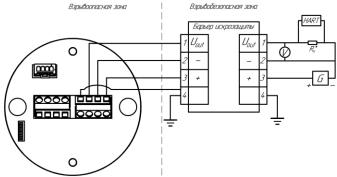

• Рисунок 27в — подключение преобразователя с взрывозащитой Ехіа «искробезопасная электрическая цепь» в корпусе К с выходным сигналом 4-20 мА — HART


• Рисунок 28в — подключение преобразователя с взрывозащитой Ехіа «искробезопасная электрическая цепь» в корпусе Д с выходным сигналом 4-20 мА — HART

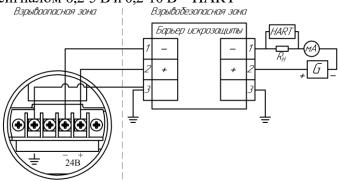
• Рисунок 29в — подключение преобразователя с взрывозащитой Exia «искробезопасная электрическая цепь» в корпусе Д с выходным сигналом 0-5 мА и 0-20 мА — HART

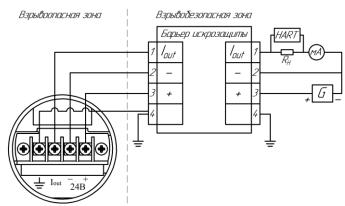


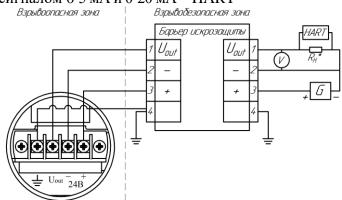
• Рисунок 30в — подключение преобразователя с взрывозащитой Ехіа «искробезопасная электрическая цепь» в корпусе Д с выходным сигналом 0,2-5 В и 0,2-10 В — НАКТ



• Рисунок 31в — подключение преобразователя с взрывозащитой Exia «искробезопасная электрическая цепь» в корпусе П, Пи с выходным сигналом 4-20 мА — HART




• Рисунок 32в — подключение преобразователя с взрывозащитой Exia «искробезопасная электрическая цепь» в корпусе П, Пи с выходным сигналом 0-5 мА и 0-20 мА — HART


• Рисунок 33в — подключение преобразователя с взрывозащитой Ехіа «искробезопасная электрическая цепь» в корпусе П, Пи с выходным сигналом 0,2-5 В и 0,2-10 В — НАКТ

• Рисунок 34в — подключение преобразователя с взрывозащитой Exia «искробезопасная электрическая цепь» в корпусе T, Ти с выходным сигналом 4-20 мА — HART

• Рисунок 35в — подключение преобразователя с взрывозащитой Exia «искробезопасная электрическая цепь» в корпусе T, Ти с выходным сигналом 0-5 мА и 0-20 мА — HART

• Рисунок 36в — подключение преобразователя с взрывозащитой Ехіа «искробезопасная электрическая цепь» в корпусе Т, Ти с выходным сигналом 0,2-5 В и 0,2-10 В — HART

Приложение Г Контровка и пломбировка ТП (рекомендуемое)

• Рисунок 1г пример пломбировки клеммной головы исполнения M2

• Рисунок 2г пример пломбировки клеммной головы исполнения М

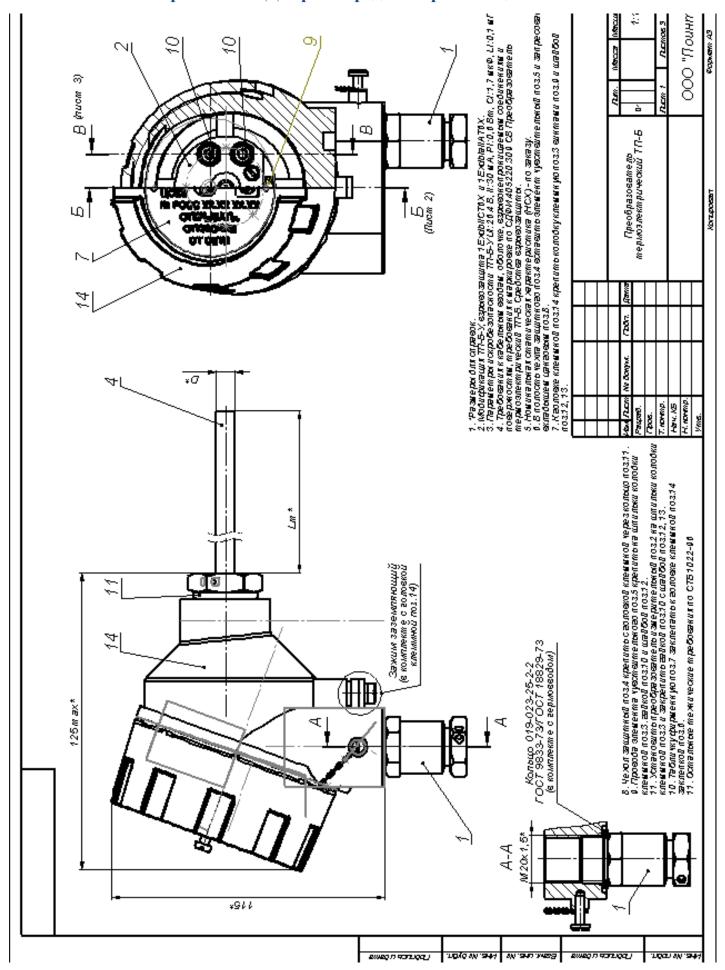


Рисунок 3г пример пломбировки клеммной головы исполнения Д.

30 | Датчик температуры SensyTemp ТП-Б, ТП-Б-У

Приложение Д чертеж средств взрывозащиты ТП

Приложение Е Виды спая рабочего конца

Таблица E.1 – Обозначение различных видов спаев рабочего конца термопар

№ п.п	Внешний вид	Обозначение	Описание
1.		И	Одиночный спай, изо- лированный от корпуса
2.		ИИ	Два одиночных спая, изолированных от корпуса и друг от друга
3.		иии	Три одиночных спая, изолированных от корпуса и друг от друга
4.		Н	Одиночный спай, неи- золированный от кор- пуса
5.		ИН	Два спая, один из которых изолированный от корпуса, другой неизолированный от корпуса
6.		2И	Двойной (четыре электрода, два положительных и два отрицательных) изолированный от корпуса спай
7.		2Н	Двойной (четыре электрода, два положительных и два отрицательных) неизолированный от корпуса спай
8.		3Н	Тройной (шесть электрода, три положительных и три отрицательных) неизолированный от корпуса спай
9.		С	Одиночный «свободный» спай, неизолированный от измеряемой среды
10.		CC	Два одиночных «свободных» спая, неизолированных от измеряемой среды
11.		2C	Двойной (четыре электрода, два положительных и два отрицательных) «свободный» спай, неизолированный от измеряемой среды

Приложение Ж Запасные части, расходные материалы и аксессуары. (справочно).

- Наименование запасной части. (укажите серийный номер и/или условное обозначение изделия).
- Информацию о расходных материалов и запасных частях, а также аксессуаров для ТС, можно найти в Интернете по адресу: www.pointltd.by

Сертификат о соответствии (справочно)

- Термопары, изготовленные во взрывозащищенном исполнении, соответствуют требованиям технического регламента Таможенного союза ТР ТС 012/2011 «О безопасности оборудования для работы во взрывоопасных средах».
- ТП-Б-У соответствуют требованиям ТР ТС 020/2011 «Электромагнитная совместимость технических средств».
- ТП-Б-У нормально функционируют и не создают помех в условиях совместной работы с аппаратурой систем и элементов, для которых они предназначены, а также с аппаратурой другого назначения, которая может быть использована совместно с данным ТП-Б-У в типовой помеховой ситуации.
- Декларации, а также Сертификаты соответствия можно найти в разделе Сертификаты на сайте <u>www.pointltd.by</u>

Приложение 3 Номинальная статическая характеристика термопар и класс допуска

Таблица 13 Пределы допускаемых отклонений ТЭДС от НСХ преобразования, выраженные в температурном эквиваленте, для разных типов термопар в зависимости от диапазона рабочих температур в соответствии с СТБ ГОСТ Р 8.585

Тип термопары (буквенное обозначение НСХ)	Класс допуска	Диапазон измерений, °С	Пределы допускаемых отклонений ТЭДС от НСХ $\pm \Delta t$, °C
1	2	3	4
	1	от -40 до + 375	1,5
		св. 375 до 1300	0,004t
TXA(K),	2	от -40 до + 333	2,5
THH(N)		св. 333 до 1300	0,0075t
	3	от - 200 до - 167	0,015 t
		св167 до +40	2,5
	2	от -40 до + 360	2,5
TVICA		св.360 до 800	0,7+0,005t
TXK(L)	3	от - 200 до - 100	1,54+0,01 t
		св100 до 100	2,5
	1	от - 40 до + 375	1,5
TMACI	1	св. 375 до 750	0,004t
ТЖК(Ј)	2	от 0 до 333	2,5
		св. 333 до 900	0,0075t
	1	от -40 до + 125	0,5
		св. 125 до 350	0,004t
TMIC(T)	2	от -40 до + 135	1,0
TMK(T)		св. 135 до 400	0,0075t
	2	от - 200 до - 66	0,015 t
	3	св. – 66 до + 40	1,0
	í	от - 40 до + 375	1,5
	1	св. 375 до 800	0,004t
TVI((E)	2	от -40 до + 333	2,5
ТХКн(Е)		св. 333 до 900	0,0075t
	3	от - 200 до - 167	0,015 t
		св167 до + 40	2,5
ΤΠΠ(S),	2	от 0 до 600	1,5
TΠΠ(R)		св. 600 до 1300	0,0025t
Примечание - t – значение измеряемой температуры, °C			

Формуляр возврата

Заявление о загрязнении приборов и компонентов

Ремонт и / или техобслуживание приборов и компонентов выполняются лишь в том случае, когда имеется полностью заполненное заявление.

Это заявление заполняется и подписывается только уполномоченным персоналом эксплуатирующей организации.

Сведения о заказчи	ике:		
Организация:			
		Телефон:	
Факс:		E-mail:	
Сведения о прибор	e:		
Тип:		Серийный номер:	
		ными для здоровья веществами?	
Да	Нет		
Если да, то какой в	ид загрязнения (нужное отмет	ить):	
Биологический	Едкий/раздражающий	Горючий (легко/быстро воспламеняющийся)	
Токсичный	Взрывоопасный	Другие вредные вещества	
☑	мми контактировал прибор?		
	ых или ядовитых веществ согл	ые приборы/компоненты были очищены и не содер пасно распоряжению о вредных веществах.	

